Glucosamine cardioprotection in perfused rat hearts associated with increased O-linked N-acetylglucosamine protein modification and altered p38 activation.

نویسندگان

  • Norbert Fülöp
  • Zhenghao Zhang
  • Richard B Marchase
  • John C Chatham
چکیده

We have shown that, in the perfused heart, glucosamine improved functional recovery following ischemia and that this appeared to be mediated via an increase in O-linked N-acetylglucosamine (O-GlcNAc) levels on nucleocytoplasmic proteins. Several kinase pathways, specifically Akt and the mitogen-activated protein kinases (MAPKs) p38 and ERK1/2, which have been implicated in ischemic cardioprotection, have also been reported to be modified in response to increased O-GlcNAc levels. Therefore, the goals of this study were to determine the effect of ischemia on O-GlcNAc levels and to evaluate whether the cardioprotection resulting from glucosamine treatment could be attributed to changes in ERK1/2, Akt, and p38 phosphorylation. Isolated rat hearts were perfused with or without 5 mM glucosamine and were subjected to 5, 10, or 30 min of low-flow ischemia or 30 min of low-flow ischemia and 60 min of reperfusion. Glucosamine treatment attenuated ischemic contracture and improved functional recovery at the end of reperfusion. Glucosamine treatment increased flux through the hexosamine biosynthesis pathway and increased O-GlcNAc levels but had no effect on ATP levels. Glucosamine did not alter the response of either ERK1/2 or Akt to ischemia-reperfusion; however, it significantly attenuated the ischemia-induced increase in p38 phosphorylation and paradoxically increased p38 phosphorylation at the end of reperfusion. These data support the notion that O-GlcNAc may play an important role as an internal stress response and that glucosamine-induced cardioprotection may be mediated via the p38 MAPK pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Responsiveness of the state of O-linked N-acetylglucosamine modification of nuclear pore protein p62 to the extracellular glucose concentration.

O-linked N-acetylglucosamine (O-GlcNAc) modification has been described in many proteins, including nuclear pore glycoproteins. In the present study we investigated the effect of extracellular glucose on the level of modification of nuclear pore protein p62 by O-GlcNAc. We found that exposure of cells to a high concentration of glucose caused an increased level of modification of p62 with O-Glc...

متن کامل

Increased O-GlcNAc levels during reperfusion lead to improved functional recovery and reduced calpain proteolysis.

We have previously shown that preischemic treatment with glucosamine improved cardiac functional recovery following ischemia-reperfusion, and this was mediated, at least in part, via enhanced flux through the hexosamine biosynthesis pathway and subsequently elevated O-linked N-acetylglucosamine (O-GlcNAc) protein levels. However, preischemic treatment is typically impractical in a clinical sett...

متن کامل

O-linked β-N-acetylglucosamine supports p38 MAPK activation by high glucose in glomerular mesangial cells.

Hyperglycemia augments flux through the hexosamine biosynthetic pathway and subsequent O-linkage of single β-N-acetyl-d-glucosamine moieties to serine and threonine residues on cytoplasmic and nuclear proteins (O-GlcNAcylation). Perturbations in this posttranslational modification have been proposed to promote glomerular matrix accumulation in diabetic nephropathy, but clear evidence and mechan...

متن کامل

Glucosamine protects neonatal cardiomyocytes from ischemia-reperfusion injury via increased protein-associated O-GlcNAc.

Increased levels of protein O-linked N-acetylglucosamine (O-GlcNAc) have been shown to increase cell survival following stress. Therefore, the goal of this study was to determine whether in isolated neonatal rat ventricular myocytes (NRVMs) an increase in protein O-GlcNAcylation resulted in improved survival and viability following ischemia-reperfusion (I/R). NRVMs were exposed to 4 h of ischem...

متن کامل

Protein modification by O-linked GlcNAc reduces angiogenesis by inhibiting Akt activity in endothelial cells.

OBJECTIVE Glucose flux through the hexosamine biosynthesis pathway (HBP) has been implicated in the development of diabetic vascular complications. O-linked N-acetylglucosamine (O-GlcNAc) modification on protein is the major mechanism mediating the actions of the HBP. Impaired angiogenesis is well-recognized in diabetes; however, the mechanisms are not completely defined. Here, we investigated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 292 5  شماره 

صفحات  -

تاریخ انتشار 2007